
Moise tutorial
(for Moise 0.7)

Jomi Fred Hübner1

Jaime Simão Sichman2

Olivier Boissier3

1 Universidade Federal de Santa Catarina
2 Universidade de São Paulo

3 École Nationale Supérieure des Mines de Saint-Étienne

2010

mailto:jomi@das.ufsc.br
mailto:jaime.sichman@poli.usp.br
mailto:Olivier.Boissier@emse.fr
http://www.das.ufsc.br
http://www.usp.br
http://www.emse.fr

Contents

1 Introduction 4
1.1 A general view of the soccer example 4
1.2 The writing paper example . 6
1.3 Structure of the remaining text 8

2 Organisational Entity Dynamics Simulator 9
2.1 Installation . 9
2.2 Structural Specification . 9

2.2.1 Role definition (individual level) 9
2.2.2 Groups definition (collective level) 11
2.2.3 Organisational Entity creation 12
2.2.4 Group creation . 12
2.2.5 Agent creation . 15
2.2.6 Role adoption . 15

2.3 Funcional Specification . 16
2.3.1 Scheme definition (collective level) 16
2.3.2 Mission definition (individual level) 17
2.3.3 Scheme creation . 18
2.3.4 Goal state changes . 18

2.4 Normative Specification . 20
2.4.1 Responsible groups . 20
2.4.2 Mission commitment . 21

2.5 Entity de-construction . 22

A Developing Organised Agents with J -Moise+ 24
A.1 Organisational agent architecture in Jason 24

A.1.1 Organisational actions 24
A.1.2 Organisational events . 26

A.2 The writing paper agents in AgentSpeak 28
A.2.1 MAS2J configuration . 29
A.2.2 Jaime’s code . 29
A.2.3 Olivier’s code . 31
A.2.4 Jomi’s code . 32
A.2.5 Execution . 33
A.2.6 Screen shots . 33

B Developing Distributed Organised Agents with S-Moise+ 35
B.1 A simple organisational agent architecture 35
B.2 The write paper agents . 36

1

C Organisational Entity API 42
C.1 A kind of ‘hello world’ . 42
C.2 Program examples . 42

D Properties of the organisational specification 44

E XML files 45
E.1 Organisational Specification for the JojTeam 45
E.2 Organisational Specification for the Write Paper application . . 47

2

Acronyms

NS Normative Specification

FS Functional Specification

MAS Multi-Agent System

MOISE Model of Organisation for multI-agent SystEms

OS Organisational Specification

OE Organisational Entity

SCH Social Scheme

SS Structural Specification

3

Chapter 1

Introduction

This tutorial describes how to specify and program a Multi-Agent System
(MAS) organisation using the Moise model. Moreover, this tutorial fo-
cus on the utilisation of the Moise computational tools. It is assumed
that the reader knows the Moise purpose and fundamental concepts (pre-
sented in [3, 4, 6], which can be found in the publications directory of
Moise distribution). A complete list of related publications is available at
http://moise.sourceforge.net/related-papers.html and more detailed
documentation is also available with the distribution in the directory doc.

1.1 A general view of the soccer example

Throughout the text, a soccer team is used as an example. A soccer team that
we will specify is formed by players with roles like goalkeeper, back player,
leader, attacker, coach, etc. These role players are distributed in two groups
(defense and attack) which form the main group (the team group). The team
structure is specified, using the Moise notation, in the Figure 1.1 (the next
chapter will explain the details of the notation and its interpretation).

The team also has some rehearsed plays, one of them is specified by the
Social Scheme (SCH) depicted in the Figure 1.2. This scheme has three mis-
sions (m1, m2, and m3) and their respective goals (the mission m3 has, for
example, the goals ‘be placed in the opponent goal area’, ‘shot at the oppo-
nent’s goal’, and, a common goal, ‘score a goal’). Agents playing these roles
may commit to this scheme missions according to Table 1.1.

The structural, functional, and deontic specifications briefly described
above form the Organisational Specification (OS) of a soccer team that, for
example, 11 players can ‘instantiated’ building the Organisational Entity (OE)
of Table 1.2.

role deontic relation mission

back permission m1

middle obligation m2

attacker obligation m3

Table 1.1: Normative Specification

4

http://moise.sourceforge.net/related-papers.html

back

leader
goalkeeper

player

middle

attacker

coach

soc

1..1

3..3

0..1
0..1

5..5

2..2

1..1

1..1

1..2

1..1

acq

aut

com

compat

intra-group
key

min..max
composition:

inheritance:

role

Abs Role

inter-grouplinks

1..1

sub-groups scope:

group

defense

attack

team

Figure 1.1: The structure of the soccer team

score a goal

m1

go towards the opponent field

m1, m2, m3

get the ball

be placed in the middle field

be placed in the opponent goal area
kick the ball to (agent committed to m2)

go to the opponent back line

kick the ball to the goal area

shot at the opponent’s goal

m1

m1

m2 m2

m2

m3

m3

Key
goal

missions

success rate parallelismchoicesequence

Scheme

Figure 1.2: A scheme of the soccer team

5

agent role in group

Marcos goal-keeper defense
Lucio back defense
Edmilson back defense
Roque Jr. back defense
Cafu leader and middle attack
Gilberto Silva middle attack
Juninho middle attack
Ronaldinho middle attack
Roberto Carlos middle attack
Ronaldo attacker attack
Rivaldo attacker attack
Scolari coach team

Table 1.2: Organisational Entity

Figure 1.3: The write paper structure

1.2 The writing paper example

Another example used in this document is the ‘writing paper’, initially de-
scribed in [7] and then extended in [2]. In this second example, we consider a
set of agents that wants to write a paper and therefore define an organisational
specification to help them. This MAS structure has one group (wpgroup) with
two roles, editor and writer, both are sub-role of the author role. The links
and cardinalities of this group are specified, using theMoise notation, in the
Figure 1.3. A complete description in XML can be found in the appendix E.2.

To write a paper, they developed a scheme where initially the editor defines
a draft version with title, abstract, introduction, and section names, this step
is represented by the goal fdv. Then the writers ‘fill’ the gaps of the paper’s
sections to get a submission version of the paper, represented by the global
goal identified by sv. This scheme is detailed in Figure 1.4, note that the goals
wcon (write the conclusion) and wref (build the references) can be performed
in parallel. There is a mission for the editor (mMan), a mission for the writers
(mCol), and another mission for writers (mBib — get the references for the
paper). This relation from roles to missions is specified in Table 1.3. Note

6

mission cardinality

mMan 1..1
mCol 1..5
mBib 1..1

Figure 1.4: The write paper scheme

role deontic relation mission TTF

editor permission mMan
writer obligation mCol 1 day
writer obligation mBib 1 day

Table 1.3: Normative Specification

that some goals have not a mission assigned, in this case, the achievement of
the goal depends on the achievement of the sub-goals. For instance, the goal
sv is achieved with the goals wsec and finish are achieved.

The structural, functional, and deontic specifications briefly described
above form an OS that, for example, 3 agents can ‘instantiated’ building the
OE of Table 1.4.

agent role in group mission

Jaime editor wpgroup mMan
Jomi writer wpgroup mCol
Olivier writer wpgroup mCol
Olivier writer wpgroup mBib

Table 1.4: Write paper Organisational Entity

7

1.3 Structure of the remaining text

The creation of the soccer team entity is initially done in a Moise OE dy-
namics simulator (described in Chapter 2). The objective of this simulator
is to allow the designer to test the organisational specification by performing
actions like agent entrance, role adoption, scheme creation, group creation,
etc. No knowledge about any programming language is required to use this
simulator, it focus only on the organisational specification and simulation.

To program the agents, appendixes A and B present two tools where agents
can be programmed usingMoise concepts. While in the latter tool, the agents
are programmed in Java, in the former, the AgentSpeak language is used. Note
however that these tools are outdated, we are currently using a new platform
based on artifacts, called ORA4MAS [3]. The documentation related to this
platform is available in theMoise distribution in the directory doc/ora4mas.

8

Chapter 2

Organisational Entity Dynamics
Simulator

This chapter explains both how to write an OS for the Moise tools and how
to use the simulator to test this OS.

2.1 Installation

In order to start using theMoise tools you need to perform to following steps:

1. check whether the Java 1.5 is installed in your system (the java command
must be in the PATH);

2. download the Moise platform from http://moise.sourceforge.net

and Jason programming language from http://jason.sourceforge.

net.

3. uncompress the downloaded files; and

4. test the system by running the script .../bin/simOE (or ant

run). The simulator asks for a specification file, select the
example/tutorial/jojOS.xml and a screen like Figure 2.1 should ap-
pear.

2.2 Structural Specification

The first step to build the Structural Specification (SS) of the soccer team (Fig-
ure 1.1) is to write a XML file that describes its structure.1 The next sections
present how this file is composed (all the content of this file is listed in ap-
pendix E.1). The focus is both on the XML tags and on some implementation
issues.

2.2.1 Role definition (individual level)

The following lines define the role inheritance relation:

1The XML files have to follow the XML Schema src/xml/os.xsd.

9

http://moise.sourceforge.net
http://jason.sourceforge.net
http://jason.sourceforge.net

Figure 2.1: Simulator first screen

<role-definitions>

<role id="player" />

<role id="coach" />

<role id="middle"> <extends role="player"/> </role>

<role id="leader"> <extends role="player"/> </role>

...

</role-definitions>

Remarks.

• The role soc is the root of the role inheritance tree. All roles are sub-roles
of soc, even if it is not explicitly specified, as is the case of role coach.

• A role definition does not imply that an agent is allowed to play it, only
when the role is added in a group specification it can be played. The
roles definition tag is used simply to state the roles hierarchy.

• To state that a role inherits properties from many other roles, the
extends tag can be used many times, for example:

<role id="r1>

<extends role="r2" />

<extends role="r3" />

</role>

10

2.2.2 Groups definition (collective level)

A group specification is described inside the tag group-specification, for
example:

<group-specification id="team">

...

</group-specification>

creates the group specification identified by team. Inside the group specifica-
tion, we can include:

• the allowed roles in this group and their cardinality. For example, the
following XML code states that one or two agents can play the role coach
in the group team:

<roles>

<role id="coach" min="1" max="2"/>

</roles>

The cardinality is optional, the default value for min is 0 and for max is
‘unlimited’.

All roles included inside a group must be previously defined inside the
role-definitions tag.

• the links between the group’s roles, for example, to state an inter-group
authority link from coach to player:

<link from="coach"

to="player"

type="authority"

scope="inter-group"

extends-subgroups="true" />

The values for the link type are ‘authority’, ‘communication’, and ‘ac-
quaintance’.

The values for the scope are ‘inter-group’ and ‘intra-group’.

In case where extends-subgroups parameter is true, this link is also
valid in all team subgroups. The default value is false.

• the subgroups and their cardinality:

<subgroups>

<group-specification id="attack" min="1" max="1">

...

</group-specification>

<group-specification id="defense" min="1" max="1">

...

</group-specification>

</subgroups>

11

Each subgroups also contains a group specification.

• the constraints formation. For example, in the group attack there are
the following role compatibility:

<formation-constraints>

<compatibility from="middle"

to="leader"

scope="intra-group"

extends-subgroups="false"

bi-dir="true"/>

</formation-constraints>

If the bi-dir parameter is true, the compatibility (or link) also exists
from the destination to source.

2.2.3 Organisational Entity creation

Given the XML file described in the previous sections, we can create organi-
sational entities, groups, agents, etc. Notice however that only the structure
is specified yet.

To create an OE:

1. Run the .../bin/simOE script.

2. Open the soccer team SS file (. . . /examples/tutorial/jojSS.xml).

3. A screen like Figure 2.1 appears: an OE with an OS but without groups,
agents, or schemes.

4. You can navigate through the OS specification clicking on the ‘OS’ tab
and after in the ‘joj’ tree object (Figure 2.2).

2.2.4 Group creation

1. To create a group, select the ‘group’/‘create’ tab, then select the creation
of a ‘root’ group (some group that is not subgroup of any other group),
select the ‘team’ specification, and finally click on ‘ok’ button.

Notice that a new group (id=gr team0)2 was created and its well forma-
tion status is not Ok (Figure 2.3).

2. Create a gr team0 subgroup using the defense specification. Notice that
a defense group can only be created as a team subgroup, since defense is
specified as a team subgroup in the SS.

3. Create another gr team0 subgroup using the attack specification.

2The id of the group is automatically given by the simulator. In the API however, the
id of the group may be defined when it is created.

12

Figure 2.2: Organisational Specification

13

Figure 2.3: Result of the first group creation

14

Figure 2.4: Role adoption result

2.2.5 Agent creation

To create an agent, select the ‘agent’/‘create’ tab, fill ‘Marcos’ in the agent
name field, and click on ‘create’ button. Do the same for the other agents
enumerated at page 6.

2.2.6 Role adoption

To assign roles to agents, as suggested in Table 1.2, select the ‘agent’/‘roles’
tab, select the agent (e.g. Marcos), select the role (e.g. ‘goalkeeper’), select the
group ‘gr defense1’, and click on the ‘ok’ button (see Figure 2.4). Repeat this
operation for the other players’ roles and notice how the groups’ well formation
status is changing.

The role adoption event is constrained by the cardinality and compatibili-
ties of each role. For example, try the following role adoption and notice the
error messages:

• Marcos adopts the role back in the group gr defense1.

• Marcos adopts the role back in the group gr team0.

• Edmilson adopts the role back in the group gr defense2.

• Edmilson adopts the role goalkeeper in the group gr defense2.

• Marcos gives up the role goalkeeper in the group gr defense2. No error
here, just the well formation has changed.

15

• Edmilson adopts the role goalkeeper in the group gr defense2. The
Edmilson’s back role are not intra-group compatible with its goalkeeper
role.

The leader role has an interesting property: it has cardinality constraints
in three groups. In defense and attack groups this role is optional (cardinality
0..1). In the team group, this role is mandatory (cardinality 1..1), but can
not be enacted in this group! Thus, the only way to satisfy the cardinality
constraint for the team group is the role leader being played either in its defense
or attack subgroups. This definition could be read as ‘there must be a leader
either in defense or in attack group’. For example, see the team well formation
status during the following actions:

• The agent Cafu gives up the leader role in the group gr attack1. The
team formation becomes not well formed, although its subgroups (defense
and attack) are well formed.

• The agent Cafu adopts the leader role in the group gr defense2. This
causes an error since the Cafu’s middle role in attack is not compatible
with the leader role in the defense group. The compatibility between
middle and leader is intra-group.

• The agent Cafu adopts the leader role in the group gr attack1. The
well formation of the team becomes ok.

2.3 Funcional Specification

In this section we will fill the functional-specification tag in order to
specify the scheme of the Figure 1.2.

2.3.1 Scheme definition (collective level)

Briefly, a scheme is a global goal decomposition tree. Such a decomposition is
done by plans, so the main elements in a scheme specification are plans and
goals. For example, the plan for the scheme sideAttack is:

<scheme id="sideAttack">

<goal id="scoreGoal" min="1" >

<plan operator="sequence">

<goal id="g1" min="1" ds="get the ball" />

<goal id="g2" min="3" ds="to be well placed">

<plan operator="parallel">

<goal id="g7" min="1" ds="go toward the opponent’s field" />

<goal id="g8" min="1" ds="be placed in the middle field" />

<goal id="g9" min="1" ds="be placed in the opponent’s goal area" />

</plan>

</goal>

<goal id="g3" min="1" ds="kick the ball to the m2Ag" >

<argument id="M2Ag" />

</goal>

<goal id="g4" min="1" ds="go to the opponent’s back line" />

<goal id="g5" min="1" ds="kick the ball to the goal area" />

<goal id="g6" min="1" ds="shot at the opponent’s goal" />

</plan>

</goal>

...

16

In this scheme, scoreGoal is the root goal, and this goal is achieved by a
plan recursively composed by a sequence of other goals achievement. The min

attribute of a goal means the number of agents that must satisfy the goal such
that it is considered globally achieved. Most of the goals of the scheme should
be satisfied by only one agent, but goal g2 should be satisfied by three agents.
The default value for min is ‘all’, meaning that all agents committed to this
goal must set is as achieved to state is as globally achieved.

Each goal has thus a unique identification in the scheme and a description.
Optionally, a goal can have an argument, e.g. the goal g3 has M2Ag as
argument. This argument must be assigned to a value in the instance scheme
creation.

It is not possible to use more than one operator for a plan, thus in the
case of a plan like ‘g = g1, (g2|g3)’ it is necessary to create two plans and an
auxiliary goal:

<goal id="g">

<plan operator="sequence">

<goal id="g1" />

<goal id="gaux" >

<plan operator="choice">

<goal id="g2" />

<goal id="g3" />

</plan>

</goal>

</plan>

</goal>

Remarks. Although not used in this example, two types of goals are consid-
ered in Moise: achievement and maintenance goals. Achievement goals are
the default type and should be declared as satisfied by the agents committed to
them when they finished to achieve them. Maintenance goals are not satisfied
in a precise moment, they should be pursued while the scheme is running. The
agents committed to them do not need to say that they are satisfied.

2.3.2 Mission definition (individual level)

A mission is a set of goals for an agent commitment in the context of a scheme
execution. The missions are defined as follow:

<scheme id="sideAttack">

... the goals ...

<mission id="m1" min="1" max="1">

<goal id="scoreGoal" />

<goal id="g1" />

<goal id="g3" />

...

</mission>

..

</scheme>

17

Figure 2.5: Scheme starting

The missions cardinality (the min and max parameters) state that only one
agent can be committed to these missions. The default value for min is 0 and
for max is ‘unlimited’.

2.3.3 Scheme creation

Before one can generate scheme related actions, it is necessary to add the
functional specification in the XML file and run the . . . /bin/simOE program
again. There is a copy of the FS in the file . . . /examples/tutorial/jojFS.xml
and in the appendix E.1.

To start the scheme, select the simOE ‘scheme’/‘start’ tab, choose a scheme
specification (there is only one: ‘sideAttack’), and click on the ‘start’ button.
An instance scheme (id=‘sch sideAttack0’) was started as shown in Figure 2.5.
Notice the well formation status.

2.3.4 Goal state changes

Each achievement goal of a scheme instance (as shown in the Figure 2.5) has
the following dynamic information:

i) state of the goal (possible states and the transitions are represented in
Figure 2.6). Every goal is initially waiting the conditions to be pursued,
when that condition is satisfied its state becomes enabled. For example,
the goal g7 is enabled only after the goal g1 has been satisfied and thus
before the g1 satisfaction g7 is in a waiting state. The algorithm 1 specify
when an goal becomes enabled. In the example of the Figure 2.5 no goal is

18

waiting

satisfiedimpossible

feasible

Figure 2.6: Goal states

function isEnabled(scheme sch, goal g)1

2

if sch is not well formed then3

return false;4

if g has no committed agent then5

return false;6

if g is the sch root then7

return true;8

else9

g is in a plan that match ‘g0 = · · · g · · ·’;10

if g is in a plan that match ‘g0 = · · · gi , g · · ·’ then11

if gi is already satisfied then12

return true;13

else14

return false;15

else16

return isEnabled(sch, g0);17

Algorithm 1: Algorithm to verify possible goals

enabled since the scheme is not well formed yet. When the scheme is well
formed, as shown in Figure 2.8, only the goal g1 is enabled. As soon as g1
is satisfied, the goals g7, g8, and g9 becomes enabled (Figure 2.9). Once
in the enabled state, the agents can pursue the goal and change its state
to either satisfied or impossible. Goals without committed agents, pass
from the state waiting to the state enabled/satisfied/impossible based on
the satisfaction state of its sub-goals.

The state of the goal can be changed in the ‘scheme’/‘goal state’ tab.

ii) committed: a list of agents committed to this goal;

iii) argument (a String): it is the values for the goal arguments (e.g. a value
for the argument M2Ag of the goal g3).

We have developed our soccer team organisation in two independent di-
mensions of the Moise model: the structure and the functioning. Since they
are not linked yet, we can not create an agent with a role and also a mission.
Thus, the next section will explain how to link these two dimensions.

19

2.4 Normative Specification

The Normative Specification (NS) states both the required roles for missions
and missions obligations for roles. The SS (Section 2.2) gives the roles and the
Functional Specification (FS) (Section 2.3) gives the missions.

The NS of our example is described in Table 1.1 and its specification in the
XML file is simple:

<normative-specification>

<norm id="n1" type="permission" role="back" mission="m1" />

<norm id="n2" type="obligation" role="middle" mission="m2" />

<norm id="n3" type="obligation" role="attacker" mission="m3" />

</normative-specification>

From the point of view of simulation, this new OS allows us to create an
agent, assign to it a role (e.g. attacker), and after a mission (e.g. m3). From
the point of view of the agent, if it

i) adopts a role (e.g. attacker)

ii) in a group responsible for an instance scheme (e.g. sch sideAttack0),

iii) this role has obligations for some of this scheme’s mission, and

iv) the cardinality of this mission is not satisfied (i.e. the minimum number
of agents committed to this mission is not achieved),

then it is obligated to commit to this mission (e.g. m3).
The next sections will exemplify how the scheme well formation status and

the agent obligations status may change according to the agents commitments
to missions.

2.4.1 Responsible groups

Each scheme has a set of responsible groups, agents from these groups will
perform the scheme. Therefore, only agents from these groups can (or have
to) commit to the missions of the scheme. Thus, the first step is to add a
responsible group for our scheme sch sideAttack0:

1. run the program . . . /examples/tutorial/tutorialDS. This program cre-
ates an entity that already has the 11 agents, 3 groups, and 1 scheme as
we had built in the previous sections.

2. In the OE tree, select the agent Roberto Carlos and notice that its obli-
gations are Ok.

3. Select the ‘scheme’/‘responsible groups’ tab, select the scheme
sch sideAttack0, and add the groups gr attack1 and gr defense2.
Notice how the Roberto Carlos’s obligations changed (Figure 2.7).

20

Figure 2.7: Agent obligations status

2.4.2 Mission commitment

The commitment to a mission is originated either by and agent’s role obligation
to the mission or by an agent own interest in the mission. In the latter case,
the agent must have a role that gives it the permission for the mission. For
example, the player Roberto Carlos can commit to the mission m2 since its
middle role in the gr attack1 gives him permission3 to this mission.

To practice this event, try the following:

• select the ‘agent’/‘missions’ tab, select the agent ‘Roberto Carlos’, select
the mission ‘m2’, and click on the ‘ok’ button. Notice that the Roberto
Carlos obligation status becomes ok. But the sch sideAttack0 is not well
formed yet.

• Commit the agent Ronaldo to the mission m3.

• Commit the agent Lucio to the mission m1. The sch sideAttack0 is now
well formed (Figure 2.8).

• Try to commit the agent Rivaldo (an attacker) to the mission m1.

• Try to commit the agent Edmilson (a back) to the mission m1.

• Try to commit the agent Marcos (the goal-keeper) to the mission m1.
Notice that the Marcos is allowed to the mission m1 since goal-keeper is
a back sub-role and back is permitted to m1. Thus the error is about
the cardinality of the mission m1.

3Indeed, this role gives obligation for the missions, but all obligation is also a permission.

21

Figure 2.8: Scheme well formed

2.5 Entity de-construction

We have build a well formed OE in the previous sections. Now select the
‘group’/‘remove’ tab and try to remove the gr team0. You will realize that
there are many constraints for the remotion of any OE element. For example,
to remove a group, the group must have no players; to remove a group player,
the player must play no role in it; to remove a player’s role, the role must
not be necessary for some player’s mission, etc. The Figure 2.10 shows these
dependencies.

22

Figure 2.9: Scheme with goal g1 achieved

role mission

goal

agent

group scheme

Figure 2.10: Dependence for deletion

23

Appendix A

Developing Organised Agents
with J -Moise+

This chapter describes an example of a simple MAS composed by agents that
are aware of its organisation. These agents are developed with J -Moise+

which is based on Jason , an interpreter used to program BDI agents (http:
//jason.sf.net, [1]). J -Moise+ is very similar to S-Moise+ (appendix B)
regarding the overall system concepts (e.g. OrgManager and OrgBox compo-
nents). The main difference is how the agents are programmed, in S-Moise+

agents are programmed in Java (using a very simple agent architecture), while
in J -Moise+ they are programmed in AgentSpeak, a programming language
based on BDI concepts and thus more suitable for agents programming.

Note: The Jason Moise+ integration was changed when we
moved to ORA4MAS platform. However, the concepts, from an
agent perspective, are the same. So we leave the chapter in this
tutorial. Refer to doc/ora4mas for the current programming pro-
posal.

The next section describes how we have customised the Jason agent ar-
chitecture to enable agents to perceive and reason about its organisation. It is
described from an user point of view and no implementation issues are there-
fore given (a more detailed description of J -Moise+ was published in [6]).
The Section A.2 exemplifies the use of J -Moise+ in the application described
in Section 1.2.

A.1 Organisational agent architecture in

Jason

In J -Moise+ an agent changes its organisation using organisational actions
and perceives it back by organisational events.

A.1.1 Organisational actions

The overall proposal is based on the addition of a special agent called OrgMan-
ager that maintains the current organisational entity (OE) state [5] (see Fig-
ure A.1). The agents then may send messages to OrgManager, using Jason
communication acts, to produce actions that change the OE. For example, to

24

http://jason.sf.net
http://jason.sf.net

Figure A.1: General view of the J -Moise+ architecture

create a new group from the specification wpgroup (see Section 1.2), an agent
should send an achieve message with content create group(wpgroup) to the
agent called orgManager1:

+some_event : true

<- .send(orgManager, achieve, create_group(wpgroup)).

It is also possible to use an organisational action in the plan using the
J -Moise+ internal actions that sends the corresponding message to OrgMan-
ager (these actions start with jmoise.), for example:

+some_event : true

<- jmoise.create_group(wpgroup).

The actions that OrgManager can handle are2 3:

• create roup(<GrSpecId>[,<GrId>]): creates a new group instance
based on GrSpecId specification. To create a subgroup, the super group
identification must be informed as the second argument.4

• remove group(<GrId>): removes the group identified by GrId, this
groups must be empty (no players) to be removed.

• create scheme(<SchSpecId> [, <ListOfRespGr>]): creates a new
scheme instance based on scheme specification identified by SchSpecId.
If the second optional parameters is used, the initial set of responsible
groups of the new scheme is defined by ListOfRespGr.

1.send is the Jason internal action used to send messages to another agent.
2These actions correspond to the organisational actions described in Chapter 2.
3A detailed explanation and examples are found in API documentation of J -Moise+.
4More arguments can be used to define the identification of the new group or obtain the

automatically given identification (see API for more information about these arguments).

25

http://moise.sf.net/doc/jmoise/api

• add responsible group(<SchId>,<GrId>): add the group GrId as re-
sponsible group for scheme SchId.

• remove scheme(<SchId>): removes the scheme SchId from the OE.

• abort scheme(<SchId>): removes the scheme SchId from the OE (does
not requires that the scheme has no players).

• set goal arg(<SchId>,<Goal>,<ArgId>,<value>): set an argument’s
value for some goal in a scheme.

• set goal state(<SchId>,<Goal>,(satisfied|impossible))

• adopt role(<RoleId>,<GrId>): adopts the role RoleId in the group
GrId.

• remove role(<RoleId>,<GrId>): removes the role RoleId in group
GrId.

• commit mission(<MisId>,<SchId>): commit the agent to mission
MisId in scheme SchId.

• remove mission([<MisId>,] <SchId>): if MisId is not informed, all
missions in the SchId will be removed.

• broadcast(<GrpId/SchId>, P, C): broadcast a message with content
C and performative P to all agents of a group or scheme.

You can see the API documentation for a complete list of actions, more details,
and examples.

A.1.2 Organisational events

The Jason programmer may customise several components of the system, in
the J -Moise+ we customise the agent architecture that is responsible to link
the agent to its environment and the other agents. We particularly change the
agent perception to include organisational events, the agent thus perceive when
a group is created, when a scheme is started, when it has an organisational
obligation, and so on. For example, when a new group is created, the event
+group(<GrSpecId>, <GrId>) is added in the set of perceptions of the agent
and it can handle this event with plans like the following:

+group(wpgroup,Id) : true

<- jmoise.adopt_role(writer,Id).

In this example, whenever a group from specification wpgroup is created, the
agent adopts the role writer. Of course the plan context (true in above exam-
ple) may constrain the role adoption. For instance, in the following plan, the
agent only adopts the role in case the group creator is its friend

+group(wpgroup,Id)[owner(O)] : my_friend(O)

<- jmoise.adopt_role(writer,Id).

26

The events which start with + represent a belief addition. However when,
for example, a group is removed from the organisational entity, a belief deletion
event is generated. In this case, the event is -group(<GrSpecId>, <GrId>)

and it can be handle by plans like:

-group(wpgroup,Id) : true

<- .print("The group ",Id," was removed!").

The events perceived by the agent are the following:

• +/- group(<GrSpecId>,<GrId>)[owner(<AgName>)]: perceived by all
agents when a group is created (event +) or removed (event -) by AgName.

• +/- play(<AgName>, <RoleId>, <GrId>): perceived by the agents of
GrId when an agent adopts (event +) or remove (event -) a role in group
GrId.

• +/- commitment(<AgName>, <MisId>, <SchId>): perceived by the
SchId players when an agent commits or removes a commitment to a
mission MisId in scheme SchId.

• +/- scheme(<SchSpecId>,<SchId>)[owner(<AgName>)]: perceived by
all agents when a scheme is created (+), finished (-), or aborted (-) by
AgName.

• + scheme group(<SchId>,<GrId>): perceived by GrId players when
this group becomes responsible for the scheme SchId.

• + sch players(<SchId>,<NumberOfPlayers>): perceived only by the
owner of the scheme when the number of players changes (agents commit
or remove a commitment in the scheme).

• + goal state(<SchId>, <GoalId>, <State>): perceived by SchId

players when the state of some goal changes.

• +/- obligation(<SchId>, <MisId>)[role(<RoleId>),

group(<GrId>)]: perceived by an agent when is has an organisa-
tional obligation for a mission. It has a role (RoleId) in a group (GrId)
responsible for a scheme (SchId) and this role is obligated to a mission
in this scheme.

• +/- permission(<SchId>, <MisId>)[role(<RoleId>),

group(<GrId>)]: perceived by an agent when is has an organisa-
tional permission for a mission. It has a role (RoleId) in a group (GrId)
responsible for a scheme (SchId) and this role has permission to a
mission in this scheme.

The agent architecture also generate goal achievement events when an
agent’s organisational goals becomes possible in the current state of the scheme
execution. The programmer can thus write plans to deal with these events to
enable to agent to achieve its organisational goals. For example, when the goal
to write the paper conclusion is permitted, the following plan will be executed:

27

+!wconc[scheme(Sch)] : true

<- .print("Writing the conclusion!");

jmoise.set_goal_state(Sch, wconc, satisfied).

The [scheme(Sch)] in the plan’s trigger event represents a set of annotations
of the goal (only one annotation in this case). Differently than arguments
(enclosed by ‘(’ and ‘)’), annotations may not be included in the predicate.
The above plan can thus simply be:

+!wconc : true

<- .print("Writing the conclusion!");

// obtain the scheme id from the belief base

?scheme(writePaperSch, Sch);

jmoise.set_goal_state(Sch, wconc, satisfied).

Of course, in place of printing a message the plan should have action that
achieve the goal. Note that when the goal is achieved, the agent have to
notify the OrgManager, so it can change the state of the scheme execution
and coordinate its execution. If the goal is not achieved, the OrgManager also
have to be notified, for instance:

+!wconc[scheme(Sch)] : true

<- .print("Writing the conclusion!");

jmoise.set_goal_state(Sch, wconc, satisfied).

// the plan to achieve the goal failed

-!wconc[scheme(Sch)] : true

<- jmoise.set_goal_state(Sch, wconc, impossible).

Other annotations of goals events are:

• mission(MissionId): the mission of the goal;

• type(Type): the type of the goal (achievement or maintenance);

• source(orgManager): the source of the goal, always the orgManager in
case of organisational goals;

• role(RoleId): the role assigned to the mission of the goal;

• group(GrpId): the group where the role is being played.

The plan may add these annotation if the corresponding information is neces-
sary for the execution of the plan, for example:

+!wconc[scheme(Sch), role(R), group(G)] : true

<- .print("Writing the conclusion for the scheme ",Sch);

.print("because I play ",R," in group ",G);

...

A.2 The writing paper agents in AgentSpeak

In this section, the write paper application (as presented in Section 1.2) is
implemented using AgentSpeak and Jason .

28

A.2.1 MAS2J configuration

Projects in Jason are defined in a .mas2j configuration file. In this file we
set which agents will run and some parameters for these agents. The write
paper application is composed by the following agents:

• OrgManager: this agent is the same as presented in the S-Moise+, but
customised to provide organisational services in Jason systems.

• Jaime: this agent will play the editor role in the application.

• Olivier: this agent will play the writer role.

• Jomi: this agent will also play the writer role.

All agents have a customised architecture (as depicted in Figure A.1) that bind
them to the organisational infrastructure. The OrgManager has two special
parameters: the XML file with the organisational specification and whether
the a graphical interface will be shown. In the specification of the organisation,
the user must start all identifiers with lower case characters, since identifiers
that start with upper case are considered as variables in AgentSpeak.

MAS write_paper {

infrastructure: Centralised

agents:

orgManager [osfile="wp-os.xml",gui=yes]

agentArchClass jmoise.OrgManager;

jaime agentArchClass jmoise.OrgAgent;

olivier agentArchClass jmoise.OrgAgent;

jomi agentArchClass jmoise.OrgAgent;

classpath: "../../lib/moise.jar";"../../lib/jmoise.jar";

aslSourcePath: ".";"../../src/asl";

}

A.2.2 Jaime’s code

/* Beliefs */

// I want to play "editor" in "wpgroups"

// (this belief is used by the moise common plans included below)

desired_role(wpgroup,editor).

// I want to commit to "mManager" mission in "writePaperSch" schemes

desired_mission(writePaperSch,mManager).

/* Initial goals */

!create_group. // initial goal

// create a group to write a paper

+!create_group : true

<- //.send(orgManager, achieve, create_group(wpgroup)).

jmoise.create_group(wpgroup,G);

29

.print("Group ",G," created").

-!create_group[error_msg(M),code(C),code_line(L)]

<- .print("Error creating group, command: ",C,", line ",L,", message: ",M).

/* Organisational Events */

/* Structural events */

// when I start playing the role "editor",

// create a writePaper scheme

+play(Me,editor,GId)

: .my_name(Me)

<- jmoise.create_scheme(writePaperSch, [GId]).

/* Functional events */

// when a scheme has finished, start another

-scheme(writePaperSch,_)

: group(wpgroup,GId)

<- jmoise.create_scheme(writePaperSch, [GId], SchId);

.print("Scheme ",SchId," created").

// include common plans for MOISE+ agents

{ include("moise-common.asl") }

/* Organisational Goals’ plans */

+!wtitle[scheme(Sch)] : true

<- .print("Writing title!");

jmoise.set_goal_state(Sch,wtitle,satisfied).

+!wabs[scheme(Sch)] : true

<- .print("Writing abstract!");

jmoise.set_goal_state(Sch,wabs,satisfied).

+!wsectitles[scheme(Sch)] : true

<- .print("Writing section titles!");

jmoise.set_goal_state(Sch,wsectitles,satisfied).

+!wconc[scheme(Sch)] : true

<- .print("Writing conclusion!");

jmoise.set_goal_state(Sch,wconc,satisfied).

+!wp[scheme(Sch)] : true

<- .print("***** FINISH! *****");

jmoise.set_goal_state(Sch,wp,satisfied).

The included file (moise-common.asl) is:

// Common plans for organised agents based on MOISE+ model.

//

// These plans use the beliefs:

// . desired_role(<GrSpec>,<Role>) and

// . desired_mission(<SchSpec>,<Mission>).

/*

Organisational Events

30

*/

/* Structural events */

// when a group is created and I desire to play in it,

// adopts a role

+group(GrSpec,Id)

: desired_role(GrSpec,Role)

<- jmoise.adopt_role(Role,Id).

/* Functional events */

// finish the scheme if it has no more players

// and it was created by me

/*

+sch_players(Sch,0)

: .my_name(Me) & scheme(_, Sch)[owner(Me)]

<- jmoise.remove_scheme(Sch).

*/

/* Deontic events */

// when I have an obligation or permission to a mission

// and I desire it, commit

+obligation(Sch, Mission)

: scheme(SchSpec,Sch) & desired_mission(SchSpec, Mission)

<- jmoise.commit_mission(Mission,Sch).

+permission(Sch, Mission)

: scheme(SchSpec,Sch) & desired_mission(SchSpec, Mission)

<- jmoise.commit_mission(Mission,Sch).

// when the root goal of the scheme is achieved,

// remove my missions and the scheme

+goal_state(Sch, _[root], achieved)

<- jmoise.remove_mission(Sch);

.my_name(Me);

if (scheme(_,Sch)[owner(Me)]) {

if (not sch_players(Sch,0)) {

.wait({ +sch_players(Sch,0)} , 1000, _)

};

jmoise.remove_scheme(Sch)

}.

// if some scheme is finished, drop all intentions related to it.

-scheme(_Spec,Id)

<- .drop_desire(_[scheme(Id)]).

+error(M)[source(orgManager)]

<- .print("Error in organisational action: ",M); -error(M)[source(orgManager)].

A.2.3 Olivier’s code

/* Beliefs */

refs([boissier04,sichman03]). // refs used in the paper

// I want to play "writer" in "wpgroups"

desired_role(wpgroup,writer).

31

// I want to commit to "mColaborator" and "mBib" missions

// in "writePaperSch" schemes

desired_mission(writePaperSch,mColaborator).

desired_mission(writePaperSch,mBib).

// include common plans for MOISE+ agents

{ include("moise-common.asl") }

/* Organisational Goals’ plans */

// a generic plan for organisational goals (they have scheme(_) annotation)

+!X[scheme(Sch)] : true

<- .print("Doing organisational goal ",X, " in scheme ",Sch);

jmoise.set_goal_state(Sch,X,satisfied).

// when I receive a tell message from S and

// S plays writer in a scheme, change the belief of

// used refs

+use_ref(NewRef)[source(S)]

: play(S, writer, _) & refs(R)

<- .print("adding ref ",NewRef, " to ", R);

-refs(R); +refs([NewRef|R]).

+play(Me,R,GrInst)

: .my_name(Me) & group(GrSpec,GrInst)

<- jmoise.group_specification(GrSpec,Roles);

.member(role(R,Min,Max,Compat,Links),Roles);

.print("I am starting playing ",R);

.print(" -- cardinality of my role (Min,Max): (",Min,",",Max,")");

.print(" -- roles compatible with mine: ", Compat);

.print(" -- all roles of the group are ",Roles).

A.2.4 Jomi’s code

/* Beliefs */

// I want to play "writer" in "wpgroups"

desired_role(wpgroup,writer).

// I want to commit to "mColaborator" mission in "writePaperSch" schemes

desired_mission(writePaperSch,mColaborator).

// include common plans for MOISE+ agents

{ include("moise-common.asl") }

/* Organisational Goals’ plans */

+!wsecs[scheme(Sch)]

: commitment(Ag, mBib, Sch)

<- // send a message to the agent committed to mission mBib

.send(Ag, tell, use_ref(bordini05));

.print("Writing sections!");

jmoise.set_goal_state(Sch, wsecs, satisfied).

32

// the plan to achieve the goal failed

-!wsecs[scheme(Sch)] : true

<- jmoise.set_goal_state(Sch, wsecs, impossible).

A.2.5 Execution

[jaime] Writing title!

[jaime] Writing abstract!

[jaime] Writing section titles!

[jomi] Writing sections!

[olivier] Doing organisational goal wsecs in scheme sch_writePaperSch0

[jaime] Writing conclusion!

[olivier] Doing organisational goal wrefs in scheme sch_writePaperSch0

[jaime] ***** FINISH! *****

... continue with next paper ...

A.2.6 Screen shots

The following screen is the mind of the Jaime agent after the execution of the
write paper scheme.

33

The screen below is the status of the write paper scheme in the end of the
execution.

34

Appendix B

Developing Distributed
Organised Agents with
S-Moise+

This chapter describes an example of a simple MAS composed by distributed
agents that follows an organisational specification. These agents are developed
with S-Moise+, an extension to Saci (http://www.lti.pcs.usp.br/saci)
where the agents have an organisational aware architecture. This tool is pro-
posed in [5] (this paper is available in the publications directory of theMoise+

distribution). While the paper focus on the organisation framework, this chap-
ter focus on the agents development. Thus the next section describes a simple
architecture for organised agents and Section B.2 explains how this application
agents could be developed.1

B.1 A simple organisational agent architec-

ture

The proposed architecture is very simple and is just a starting point towards
organisation oriented programming. The base idea is an agent that always do
what its organisation needs, it does not have personal goals, and thus there is
no conflict between goals.

The following algorithm summarises the agent functioning cycle:

while true do1

g ← choseGoal();2

p← makePlan(g);3

execute(p);4

The agent firstly chooses an organisational goal, plans a sequence of actions
to achieve it, and then executes the plan. MakePlan and execute are domain
dependent, whereas choseGoal function is general and could be

1As remarked in the introduction, this tool is not supported anymore. Refer to
doc/ora4mas for the current programming proposal.

35

http://www.lti.pcs.usp.br/saci

function choseGoal() : Goal;1

if there is an organisational goal permitted to be achieved then2

returns it;3

if I have no role then4

adopts a role;5

returns choseGoal();6

if try to commit to an obligated mission then7

returns choseGoal();8

if try to commit to a permitted mission then9

returns choseGoal();10

if try to uncommit to finished schemes then11

for all mission m I am committed to do12

if the scheme of m is already finished then13

uncommit(m);14

returns no goal;15

According to this algorithm, in case the agent has no organisational goal
(first if), it firstly tries to adopt a role, then tries to commit to an obligated
mission, and lastly it tries to commit to a permitted mission. After its com-
mitments, it eventually will get an organisational goal. The last if remove
the agent commitments when a scheme are already finished. Note that this
algorithm assumes that the agent will enact only one role in the organisation.

B.2 The write paper agents

The S-Moise+ API has three main classes to access the organisational layer
(as defined in [5]):

• OrgBox: this class has methods to generate organisational events like
role adoption, mission commitment, group creation, etc. (See the API
documentation for a detailed documentation).

• OEAgent: this class represents the agent inside the organisation, it stores
the agents roles, missions, etc.

• BaseOrgAgent: this class implements the architecture described in Sec-
tion B.1. It has two attributes currentGoal (from class GoalInstance)
and currentPlan (a Java List). currentGoal is initialised in the choseGoal
method and currentPlan is initialised in the user’s plan method. The cur-
rentPlan is a list of strings where each element is an action description.

Using these classes, it is quite easy to code agents in the S-Moise+ frame-
work. The programmer needs to override the adoptRole, plan, and executeAct
methods of the BaseOrgAgent class. For example, the Jomi agent program is2:

public class JomiAg extends BaseOrgAgent {

public static void main(String[] args) {

2The code for exceptions handling is omitted to increase readability.

36

file:../api/saci/moise/package-summary.html
file:../api/saci/moise/package-summary.html

JomiAg a = new JomiAg();

if (a.enterSoc("jomi", "writePaperSoc")) {

a.initAg(null);

a.run();

}

}

protected boolean adoptRole() {

String roleId = "writer";

String grTeamId = getOrgBox().getRootGroupInstance("wpgroup");

if (grTeamId != null) {

getOrgBox().adoptRole(roleId, grTeamId);

print("adopted the role "+roleId);

return true;

} else {

print("plan aborted: can not identify/create a group team");

}

return false;

}

protected void plan() {

currentPlan = null;

if (currentGoal != null) {

// create a plan that only prints the current goal!

currentPlan = new ArrayList();

currentPlan.add("print("+currentGoal+")");

}

}

protected void executeAct(String action) {

if (action.startsWith("print"))

print(action);

}

}

The main method just creates an JomiAg instance, enter this agent in the
society, and runs it. The default run method is the one proposed in the archi-
tecture (a while true loop).

When the choseGoal method do not find an organisational goal for the
agent, it first calls adoptRole. This Jomi’s method gets the identification of
the wpgroup instance3 and adopts the ‘writer’ role in this group.

Jomi’s plan method is very simple, itcreates a plan with only one action
that is to print the goal! Having a plan, the architecture calls executeAct for
each action of the current plan. Finally the executeAct method executes the
print actions.

The Jaime program is:

public class JaimeAg extends BaseOrgAgent {

public static void main(String[] args) {

JaimeAg a = new JaimeAg();

if (a.enterSoc("jaime", "writePaperSoc")) {

a.initAg(null);

a.run();

}

3In case where there is no instance, the getRootGroupInstance method creates one.

37

}

protected boolean adoptRole() {

String roleId = "editor";

String grTeamId = getOrgBox().getRootGroupInstance("wpgroup");

if (grTeamId != null) {

getOrgBox().adoptRole(roleId, grTeamId);

print("adopted the role "+roleId);

return true;

} else {

print("plan aborted: can not identify/create a group team");

}

return false;

}

protected void uncommit(MissionPlayer mp) {

super.uncommit(mp);

// it is the case my scheme is finished

SCH schWP = findSch();

if (schWP != null) {

if (schWP.getRoot().isSatisfied()) {

getOrgBox().finishSCH(schWP.getId());

destroy(); // kill myself

}

}

}

protected void plan() {

currentPlan = null;

if (currentGoal == null) { // there is no goal

// create a Write a Paper scheme

if (findSch() == null)

createSch();

choseGoal();

}

if (currentGoal != null) {

// create a plan that only prints the current goal!

currentPlan = new ArrayList();

currentPlan.add("print("+currentGoal+")");

}

}

protected void executeAct(String action) {

if (action.startsWith("print"))

print(" * doing * "+action);

}

SCH findSch() {

// find my group scheme

Group myGroup = getRolePlayer().getGroup();

Iterator iSch = getOrgBox().getOE().

findInstancesOfSchSpec("writePaperSch").iterator();

while (iSch.hasNext()) {

SCH sch = (SCH)iSch.next();

if (sch.getResponsibleGroups().contains(myGroup))

return sch;

}

return null;

38

}

boolean firstSchAlreadyCreated = false;

SCH createSch() {

if (firstSchAlreadyCreated)

return null;

String schId = getOrgBox().startSCH("writePaperSch");

// set the responsible group

getOrgBox().addResponsibleGroup(schId, getRolePlayer().

getGroup().getId());

firstSchAlreadyCreated = true;

return getOrgBox().getOE().findSCH(schId);

}

public RolePlayer getRolePlayer() {

return (RolePlayer)getOrgBox().getMyOEAgent().

getRoles().iterator().next();

}

}

This agent planner creates a write paper scheme in case it could not find
an organisational goal (chose goal equals null). It also overrides the uncommit
method. If Jaime uncommits its mMan mission, it means that the root goal
of the write paper scheme is achieved, and thus Jaime can finish the scheme
(remove it from the organisational entity). Since a scheme could be finished
only when it has no players, Jaime waits that other agents uncommit and then
finishes the scheme.

The following steps describe how to run this MAS with Ant scripts4:

1. Go to saci/examples/moise/writePaper directory

2. Start Saci

ant saci

3. Start the OrgManager. In the Saci window, menu Launcher/Start Soci-
eties, fill the fields as shown in the figure below.

4You need to install Ant to run this example as described here, it is available at ant.

apache.org.

39

ant.apache.org
ant.apache.org

Alternatively, start the OrgManager by Ant

ant orgManager

The OrgManager will create a new window where the current organisa-
tional specification and entity can be consulted.

4. Run the Jaime agent

ant jaime

The output should be something like:

Agent jaime is inside society writePaperSoc

[jaime] adopted the role editor

[jaime] committed to permitted mission writePaperSch.mManager

in sch_writePaperSch0 [jaime] my goal is wtitle

[jaime] Executing plan [print(wtitle)]

[jaime] * doing * print(wtitle)

[jaime] Setting wtitle as satisfied.

[jaime] my goal is wabs

[jaime] Executing plan [print(wabs)]

[jaime] * doing * print(wabs)

[jaime] Setting wabs as satisfied.

[jaime] my goal is wsectitles

[jaime] Executing plan [print(wsectitles)]

[jaime] * doing * print(wsectitles)

[jaime] Setting wsectitles as satisfied.

[jaime] my goal is fdv

[jaime] Executing plan [print(fdv)]

[jaime] * doing * print(fdv)

[jaime] Setting fdv as satisfied.

Note that Jaime adopted the editor role, committed to mMan mission
and satisfied the goal fdv (first darft version).

5. Run the Jomi agent

ant jomi

The output should be something like:

40

Agent jomi is inside society writePaperSoc

[jomi] adopted the role writer

[jomi] committed to writePaperSch.mColaborator

[jomi] my goal is wsec

[jomi] Executing plan [print(wsec)]

[jomi] print(wsec)

[jomi] Setting wsec as satisfied.

Now Jaime can continue and satisfy the goal wconc, Jomi commits to
mBib mission and satisfies wref and sv goals. Then Jaime satisfy the
scheme root goal. Since the scheme is satisfied, both uncommit their
missions and finish their work.

41

Appendix C

Organisational Entity API

The same events that we can produced on an OE by the simulator can be
produced by calling Java methods. Indeed, the simulator only encapsulates
these calls in a graphical interface. This chapter will therefore briefly introduce
the utilization of the Java API for maintaining the state of an OE.

C.1 A kind of ‘hello world’

The simplest program we can write using the Moise+ Java API is1:

import moise.oe.*;

class HelloMoise {

public static void main(String[] args) {

try {

OE currentOE = OE.createOE("winGame", "jojOS.xml");

new moise.tools.SimOE(currentOE);

} catch (Exception e) {

System.exit(1);

} } }

• the first line import the Moise+ OE API;

• the line 5 creates an OE with the goal ‘winGame’ and OS as state in the
file ‘jojOS.xml’;

• the line 8 calls the simulator interface.

C.2 Program examples

In the directory . . . /examples/tutorial there are commented examples of Java
programs that:

• Creates the groups, agents, and roles: TutorialSS.java

1Before compiling and running this program, you must add the moise.jar file in the
CLASSPATH.

42

• Creates the scheme and goals: TutorialFS.java

• Creates commitments: TutorialFS.java

43

Appendix D

Properties of the organisational
specification

The organisation constraints used in S-Moise+ and J -Moise+ may be
turned off for some applications. For example, normally a group can be re-
moved only when empty. To turn this constraint off, the SS have to include:

<structural-specification>

<properties>

<property id="check-players-in-remove-group" value="false" />

</properties>

...

The list of reserved properties in the SS are:

• check-players-in-remove-group (default value is true): whether a
group can be removed when some agent is playing a role inside the group.

• check-subgroup-in-remove-group (default value is true): whether a
group can be removed when some subgroup is attached.

• check-missions-in-remove-role (default value is true): whether an
agent may remove a role if the role is obliged to that mission.

The list of reserved properties in the FS are:

• check-players-in-remove-scheme (default value is true): whether a
scheme can be removed when some agent is comitted to the scheme.

• check-players-in-remove-responsible-group (default value is true):
whether a responsible group can be removed from a scheme when some
agent of the group is committed to a mission in the scheme.

• only-owner-can-remove-scheme (default value is true): whether only
the owner of a scheme can remove it.

• check-goals-in-remove-mission (default value is true): whether an
agent can remove a mission when some of the mission’s goals were not
achieved.

44

Appendix E

XML files

E.1 Organisational Specification for the Jo-

jTeam
<?xml version="1.0" encoding="UTF-8"?>

<?xml-stylesheet href="os.xsl" type="text/xsl" ?>

<organisational-specification

id="joj"

os-version="0.7"

xmlns=’http://moise.sourceforge.net/os’

xmlns:xsi=’http://www.w3.org/2001/XMLSchema-instance’

xsi:schemaLocation=’http://moise.sourceforge.net/os

http://moise.sourceforge.net/xml/os.xsd’>

<structural-specification>

<role-definitions>

<role id="player" />

<role id="coach" />

<role id="middle"> <extends role="player"/> </role>

<role id="leader"> <extends role="player"/> </role>

<role id="back"> <extends role="player"/> </role>

<role id="goalkeeper"> <extends role="back"/> </role>

<role id="attacker"> <extends role="player"/> </role>

</role-definitions>

<group-specification id="team">

<roles>

<role id="coach" min="1" max="2"/>

</roles>

<links>

<link from="leader" to="player" type="authority"

scope="inter-group" extends-subgroups="true" bi-dir="false"/>

<link from="coach" to="player" type="authority"

scope="inter-group" extends-subgroups="true" bi-dir="false"/>

<link from="player" to="player" type="communication"

scope="inter-group" extends-subgroups="true" bi-dir="false"/>

<link from="player" to="coach" type="acquaintance"

scope="inter-group" extends-subgroups="true" bi-dir="false"/>

</links>

<subgroups>

<group-specification id="attack" min="1" max="1">

<roles>

<role id="middle" min="5" max="5" />

<role id="leader" min="0" max="1"/>

<role id="attacker" min="2" max="2" />

</roles>

<formation-constraints>

<compatibility from="middle" to="leader" type="compatibility"

scope="intra-group" extends-subgroups="false"

bi-dir="true"/>

45

</formation-constraints>

</group-specification>

<group-specification id="defense" min="1" max="1">

<roles>

<role id="leader" min="0" max="1" />

<role id="goalkeeper" min="1" max="1" />

<role id="back" min="3" max="3" />

</roles>

<links>

<link from="goalkeeper" to="back" type="authority"

scope="intra-group" extends-subgroups="false"

bi-dir="false"/>

</links>

<formation-constraints>

<compatibility from="back" to="leader" type="compatibility"

scope="intra-group" extends-subgroups="false"

bi-dir="true"/>

</formation-constraints>

</group-specification>

</subgroups>

<formation-constraints>

<!-- subgroups scope cardinality -->

<cardinality min="1" max="1" object="role" id="leader"/>

</formation-constraints>

</group-specification>

</structural-specification>

<functional-specification>

<scheme id="sideAttack" >

<goal id="scoreGoal" min="1">

<plan operator="sequence">

<goal id="g1" min="1" ds="get the ball" />

<goal id="g2" ds="to be well placed">

<plan operator="parallel">

<goal id="g7" min="1" ds="go toward the opponent’s field" />

<goal id="g8" min="1" ds="be placed in the middle field" />

<goal id="g9" min="1" ds="be placed in the opponent’s goal area" />

</plan>

</goal>

<goal id="g3" min="1" ds="kick the ball to the m2Ag" >

<argument id="M2Ag" />

</goal>

<goal id="g4" min="1" ds="go to the opponent’s back line" />

<goal id="g5" min="1" ds="kick the ball to the goal area" />

<goal id="g6" min="1" ds="shot at the opponent’s goal" />

</plan>

</goal>

<mission id="m1" min="1" max="1">

<goal id="g1" />

<goal id="g3" />

<goal id="g7" />

</mission>

<mission id="m2" min="1" max="1">

<goal id="g8" />

<goal id="g4" />

<goal id="g5" />

</mission>

<mission id="m3" min="1" max="1">

<goal id="g9" />

<goal id="g6" />

</mission>

</scheme>

</functional-specification>

<normative-specification>

<norm id="n1" type="permission" role="back" mission="m1" />

<norm id="n2" type="obligation" role="middle" mission="m2" />

<norm id="n3" type="obligation" role="attacker" mission="m3" />

</normative-specification>

</organisational-specification>

46

E.2 Organisational Specification for the Write

Paper application
<?xml version="1.0" encoding="UTF-8"?>

<?xml-stylesheet href="http://moise.sourceforge.net/xml/os.xsl" type="text/xsl" ?>

<organisational-specification

id="wp"

os-version="0.8"

xmlns=’http://moise.sourceforge.net/os’

xmlns:xsi=’http://www.w3.org/2001/XMLSchema-instance’

xsi:schemaLocation=’http://moise.sourceforge.net/os

http://moise.sourceforge.net/xml/os.xsd’ >

<structural-specification>

<role-definitions>

<role id="author" />

<role id="writer"> <extends role="author"/> </role>

<role id="editor"> <extends role="author"/> </role>

</role-definitions>

<group-specification id="wpgroup" monitoring-scheme="monitoringSch">

<roles>

<role id="writer" min="1" max="5" />

<role id="editor" min="1" max="1" />

</roles>

<links>

<link from="writer" to="editor" type="acquaintance"

scope="intra-group" extends-subgroups="true" bi-dir="false"/>

<link from="editor" to="writer" type="authority"

scope="intra-group" extends-subgroups="true" bi-dir="false"/>

<link from="author" to="author" type="communication"

scope="intra-group" extends-subgroups="true" bi-dir="false"/>

</links>

<formation-constraints>

<compatibility from="editor" to="writer" type="compatibility"

scope="intra-group" extends-subgroups="false"

bi-dir="true"/>

</formation-constraints>

</group-specification>

</structural-specification>

<functional-specification>

<scheme id="writePaperSch" monitoring-scheme="monitoringSch">

<goal id="wp" ttf="5 seconds">

<plan operator="sequence" >

<goal id="fdv" ds="First Draft Version">

<plan operator="sequence">

<goal id="wtitle" ttf="1 day" ds="Write a title"/>

<goal id="wabs" ttf="1 day" ds="Write an abstract"/>

<goal id="wsectitles" ttf="1 day" ds="Write the sections’ title" />

</plan>

</goal>

<goal id="sv" ds="Submission Version">

<plan operator="sequence">

<goal id="wsecs" ttf="7 days" ds="Write sections"/>

<goal id="finish" ds="Finish paper">

<plan operator="parallel">

<goal id="wconc" ttf="1 day" ds="Write a conclusion"/>

<goal id="wrefs" ttf="1 hour" ds="Complete references and link them to text"/>

</plan>

</goal>

</plan>

</goal>

</plan>

</goal>

47

<mission id="mColaborator" min="1" max="5">

<goal id="wsecs"/>

</mission>

<mission id="mManager" min="1" max="1">

<goal id="wabs"/>

<goal id="wp"/>

<goal id="wtitle"/>

<goal id="wconc"/>

<goal id="wsectitles"/>

</mission>

<mission id="mBib" min="1" max="1">

<goal id="wrefs"/>

<preferred mission="mColaborator"/>

<preferred mission="mManager"/>

</mission>

</scheme>

<scheme id="monitoringSch">

<goal id="monitor">

<plan operator="choice">

<goal id="sanction" ds="Sanction the agent that is not doing its job!"/>

<goal id="reward" ds="Reward some agent for doing a good job!"/>

</plan>

</goal>

<mission id="ms" min="1" max="1" >

<goal id="sanction"/>

</mission>

<mission id="mr" min="1" max="1" >

<goal id="reward"/>

</mission>

</scheme>

</functional-specification>

<normative-specification>

<norm id = "n1"

type="permission"

role="editor" mission="mManager" />

<norm id = "n2"

type="obligation"

role="writer" mission="mBib"

time-constraint="1 day" />

<norm id = "n3"

type="obligation"

role="writer" mission="mColaborator"

time-constraint="1 day" />

<norm id = "n4"

type="obligation"

condition="unfulfilled(obligation(_,n2,_,_))"

role="editor" mission="ms"

time-constraint="3 hours"/>

<norm id = "n5"

type="obligation"

condition="fulfilled(obligation(_,n3,_,_))"

role="editor" mission="mr"

time-constraint="3 hours"/>

<norm id = "n6"

type="obligation" condition="#goal_non_compliance"

role="editor" mission="ms"

time-constraint="3 hours"/>

<norm id = "n7"

type="obligation" condition="#role_compatibility"

role="editor" mission="ms"

time-constraint="30 minutes"/>

<norm id = "n8"

type="obligation" condition="#mission_cardinality"

role="editor" mission="ms"

time-constraint="1 hour"/>

<!-- norm id = "n9"

type="obligation" condition="#role_cardinality"

role="editor" mission="ms"

time-constraint="30 minutes"/-->

</normative-specification>

</organisational-specification>

48

Bibliography

[1] Rafael H. Bordini, Jomi Fred Hübner, and Michael Wooldrige. Program-
ming Multi-Agent Systems in AgentSpeak using Jason. Wiley Series in
Agent Technology. John Wiley & Sons, 2007.

[2] Jomi F. Hübner, Olivier Boissier, and Rafael H. Bordini. Normative pro-
gramming for organisation management infrastructures. In Axel Polleres
and Julian Padget, editors, Workshop on Coordination, Organization,
Institutions and Norms in agent systems (COIN09@MALLOW) Torino,
Italy, 7th–11th September, volume 494. CEUR, 2009.

[3] Jomi F. Hübner, Olivier Boissier, Rosine Kitio, and Alessandro Ricci. In-
strumenting multi-agent organisations with organisational artifacts and
agents: “giving the organisational power back to the agents”. Journal
of Autonomous Agents and Multi-Agent Systems, 2009.

[4] Jomi Fred Hübner, Jaime Simão Sichman, and Olivier Boissier. A model
for the structural, functional, and deontic specification of organizations in
multiagent systems. In Guilherme Bittencourt and Geber L. Ramalho, edi-
tors, Proceedings of the 16th Brazilian Symposium on Artificial Intelligence
(SBIA’02), volume 2507 of LNAI, pages 118–128, Berlin, 2002. Springer.

[5] Jomi Fred Hübner, Jaime Simão Sichman, and Olivier Boissier.
S-MOISE+: A middleware for developing organised multi-agent systems.
In Olivier Boissier, Virginia Dignum, Eric Matson, and Jaime Simão Sich-
man, editors, Coordination, Organizations, Institutions, and Norms in
Multi-Agent Systems, volume 3913 of LNCS, pages 64–78. Springer, 2006.

[6] Jomi Fred Hübner, Jaime Simão Sichman, and Olivier Boissier. Developing
organised multi-agent systems using the MOISE+ model: Programming
issues at the system and agent levels. International Journal of Agent-
Oriented Software Engineering, 1(3/4):370–395, 2007.

[7] Rosine Kitio, Olivier Boissier, Jomi Fred Hübner, and Alessandro Ricci.
Organisational artifacts and agents for open multi-agent organisations:
“giving the power back to the agents”. In Jaime Sichman, P. Noriega,
J. Padget, and Sascha Ossowski, editors, Coordination, Organizations, In-
stitutions, and Norms in Agent Systems III, volume 4870 of LNCS, pages
171–186. Springer, 2008. Revised Selected Papers.

49

	Introduction
	A general view of the soccer example
	The writing paper example
	Structure of the remaining text

	Organisational Entity Dynamics Simulator
	Installation
	Structural Specification
	Role definition (individual level)
	Groups definition (collective level)
	Organisational Entity creation
	Group creation
	Agent creation
	Role adoption

	Funcional Specification
	Scheme definition (collective level)
	Mission definition (individual level)
	Scheme creation
	Goal state changes

	Normative Specification
	Responsible groups
	Mission commitment

	Entity de-construction

	Developing Organised Agents with J-Moise+
	Organisational agent architecture in Jason
	Organisational actions
	Organisational events

	The writing paper agents in AgentSpeak
	MAS2J configuration
	Jaime's code
	Olivier's code
	Jomi's code
	Execution
	Screen shots

	Developing Distributed Organised Agents with S-Moise+
	A simple organisational agent architecture
	The write paper agents

	Organisational Entity API
	A kind of `hello world'
	Program examples

	Properties of the organisational specification
	XML files
	Organisational Specification for the JojTeam
	Organisational Specification for the Write Paper application

